當(dāng)懸浮物流動時,葉輪流道內(nèi)水力摩擦損失變化將影響泵內(nèi)總的水力損失。在具有強(qiáng)烈混合液流即具有混合損失的壓水室內(nèi),水力損失為自模損失。
懸浮物在葉輪流道內(nèi)的流動速度主要與圓周速度有關(guān),在渣漿泵中這種速度相當(dāng)大。
應(yīng)該考慮從偽層流狀態(tài)過渡到自模狀態(tài),在假定的雷諾數(shù)Re很寬變化范圍內(nèi)發(fā)生。如果偽層流狀態(tài)在Re<3000時開始,那么自模狀態(tài)在Re=11000~12000時穩(wěn)定。在靠近佳狀態(tài),以及一般雷諾數(shù)大于對應(yīng)自模狀態(tài)值的大多數(shù)情況下大流量狀態(tài),和只有在小流量狀態(tài),在泵一些斷面上可能產(chǎn)生與自模狀態(tài)有顯著區(qū)別的流動狀態(tài)。
這樣,渣漿泵的大多數(shù)狀態(tài)將是自模狀態(tài),因此泵過流部件流道內(nèi)的損失,無論在抽送清水或者抽送懸浮物時將是相同的。
當(dāng)很小流量時,流速下降,以至葉輪流道內(nèi)流動狀態(tài)從自模轉(zhuǎn)變?yōu)橛H動或者層流狀態(tài)。在這種情況下,水力損失遠(yuǎn)比同樣流速時自模狀態(tài)下?lián)p失大。
過流部件流道內(nèi)水力摩擦損失的增大,將導(dǎo)致小流量時泵揚(yáng)程特性曲線的“凹陷”現(xiàn)象發(fā)生。在很小流量時,葉輪和壓水室之間大量流體進(jìn)行強(qiáng)烈交換,這就導(dǎo)致素動或者自模狀態(tài)發(fā)生,揚(yáng)程略有增加,接近泵抽送均質(zhì)液體時的揚(yáng)程。
懸浮物密度越大,對應(yīng)自模狀態(tài)開始的雷諾數(shù)Re就越大(在相同懸浮物流速時)因此,當(dāng)懸浮物密度增大時,揚(yáng)程特性曲線在小流量的情況下降低較為明顯。
因?yàn)?strong>渣漿泵抽送清水和懸浮物時理論揚(yáng)程相同所以它們的水力功率也與懸浮物和清水的密度有關(guān)。軸承和填料函摩擦損失功率,占水力功率的百分?jǐn)?shù)不大。泵抽送懸浮物時圓盤損失功率與抽送清水時圓盤損失功率的比值遠(yuǎn)大于懸浮物和清水的密度之比。其理由說明如下。在葉輪腔內(nèi)大部分液體的角速度,一次近似時采用等于葉輪角速度的一半。隨著腔內(nèi)液體到泵軸的距離減小,圓周速度降低。當(dāng)懸浮物在腔內(nèi)圓周速度明顯減小時,流動狀態(tài)不再是自模狀態(tài)。這種現(xiàn)象與所研究兩個腔的范圍摩擦增大有關(guān)。這樣,在泵抽送懸浮物時,觀察到圓盤摩擦損失增大。這種效應(yīng)在液體側(cè)向吸入的泵上特別顯著,在泵上葉輪后蓋是整體的(無穿軸孔),即存在具有很小圓周速度的很大表面。因此,在這個區(qū)域內(nèi)懸浮物以很小速度旋轉(zhuǎn)。
根據(jù)O.H莫吉列夫斯基進(jìn)行的磁鐵粉和硅鐵懸浮物高濃度試驗(yàn)資料,為了考慮圓周摩擦附加損失,必須將泵的功率比泵抽送同樣密度均質(zhì)液體時功率增大10%~12%。因此,如果知道泵抽送清水時的功率No,那么抽送懸浮物時的功率為
N=1.12No/Ne
式中p,p懸浮物和清水的密度
現(xiàn)在我們研究泵抽送懸浮物時汽蝕余量相對于抽送清水時汽蝕余量的變化。
因?yàn)楸迷诤軐捔髁糠秶鷥?nèi)揚(yáng)程特性曲線(很小流量狀態(tài)除外),與抽送清時一樣,所以,各種損失,特別是葉輪入口損失也與抽送清水時一樣。
現(xiàn)有試驗(yàn)資料證明,與抽送清水泵相比,抽送懸浮物泵的汽蝕特性曲線明顯惡化。渣漿泵抽送懸浮物時允許汽蝕余量△ho比抽送清水時汽蝕余量有所增加。